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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2524

AN INVESTIGATION OF AIRCRAFT HEATERS

XXXVIIT - DETERMINATION OF THERMAL PERFORMANCE OF
RECTANGULAR- AND TRAPEZOIDAL-SHAPED INNER-SKIN
PASSAGES FOR ANTI-ICING SYSTEMS

By L. M. K. Boelter, V. D. Sanders, and F. E. Romie
SUMMARY

The results of an experimentel determination of the thermal and
hydrodynamic behavior of air in the downstream portion of two types of
double~-skin passages used in heated-air leading-edge anti-icing systems

‘are presented.

Local heat-transfer rates and static-pressure drops were measured
for small ducts of trapezoidal and rectangular cross section. These
ducts were used to simulate the heat-transfer characteristics of the
inner skin of anti-icing heated wings. The range of Reynolds moduli
for the tests was from 1000 to about 10,000.

The measured unit thermal conductances were plotted as a function
of Reynolds modulus and as a function of the distance from the leading
edge of the heated test plate. Results for both the trapezoidal and
rectangular ducts indicated that the downstream average unit thermal
conductance in the turbulent region was 30 to 35 percent below that
glven by the commonly used equations. In the laminar region, the experi-
mental unit conductance was found to be approximately 30 percent below
predicted values for the rectangular ducts but for the trapezoidal ducts
the data were much lower than the predicted values.

Temperature measurements of the inner skin indicated that it acted
as a highly effective fin. This was corroborated by calculations in
which the inner skin was considered to be a fin.
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INTRODUCTION

Values of the unit thermal conductance for air flowing inside the
double-skin passages must be known in order to design a heated-alr,
leading-edge, anti~icing system.

Most of the avallable data on the thermal conductances for flow of
air Inside ducts concern the values at points far downstream from the
duct entrance. (Reference 1, however, contains values of the local
thermal conductance near the entrance of a circular tube.) Data which
define the local heat-transfer rate throughout the length of heated
straight ducts are presented herein.

A steam-condensing calorimetric test section containing long,
straightened ducts, typical of double-skin passages used in the leading-
edges of airfoils was designed and constructed. Two types of inner skin
using trapezoidal- and rectangular-shaped passages have been tested.
Data required to obtain values of the unit thermal conductance were

recorded as a function of distance along the passages in order to study
the behavior of the air in the downstream region.

The following data were obtained:

(1) Local steam condensation rates, which are proportionél to
heat-transfer rates

(2) Inlet- and outlet-air temperatures

(3) Various surface temperatures of steam plate and inner skin
(4) Weight rates of air passing through test section

(5) Local and over-all static-pressure drops

This investigation, part of a research program conducted on anti-

icing systems at the University of California, was sponsored by and
conducted with the financial assistance of the National Advisory Committee

for Aeronautics.
SYMBOIS

A heat-transfer area of inner and outer skins, square feet

Ay cross-sectional area of duct, square feet
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Nu

Pr

duct width, feet

number of duct passages (10)
unit heat capacity, Btu/(1b) (°F)
hydraulic dismeter, feet (hAx/P)

frictional pressure loss, (1b)/(sq ft)

.unit thermal comvective conductance (based on logarithmic-

mean temperature difference), Btu/(hr)(sq ft)(°F)

local unit thermal conductance, Btu/(hr)(sq ft)(°F)

welght rate of fluid per unit of cross-sectional ares,
(1p)/(br) (sq £t)

gravitational force per unit of mass, (1b)/(1b-sec2)/(ft)

heat of evaporation of 1 cubic centimeter of water at
atmospheric pressure, Btu/(cc)

thermal conductivity of air, Btu/(hr)(sq ft)(°F/ft)
total length of duct passage, feet

width of condensate section (length of duct traversing one
condensate section), feet

Nusselt modulus, dimensionless (chH/k>

wetted perimeter of duct passage, feet

pep (3600g)
Prandtl modulus, dimensionless .

rate of heat transfer, Btu/(hr)

steam condensation rate obtained under "load" conditions,

(cc)/(hr)

steam condensation rate obtained under "no-load" conditions,

(cc)/(nr)
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Re Reynolds modulus, dimensionless (GDH/36OOg9

tp mean temperature of duct wall for section m, OF

u mean air velocity, (ft)/(sec)

W gir weight rate through all duct passeges, (1b)/(hr)

ble distance from duct entrance, feet

¥ weight density of air, (1b)/(cu ft)

0 thickness of rectangular duct, feet

g isothermal friction factor defined by A _ ¢ L vf
4 Dy 28

m absolute viscosity, (1b)(sec)/(sq ft)

T alr temperature, O

To temperature of air entering ducts, °F

Tn average mixed mean temperature of air in section m, OF

Subscripts:

av average

m mth condenssate section

DESCRIPTION OF APPARATUS

The test stand used for the experimental work in this investigation
is shown in figure 1. The test stand consisted of three parts: (1) The
steam chest, (2) the inner-skin inserts, and (3) the burette chember.
The apparatus was constructed so that various inner skins could be
attached to the heated plate, thereby simulating the double-skin pas-
sages employed in heated-alr leading-edge systems.

The heated plate was an integral part of the steam chest, which was
a maechined casting. The air side of the plate was polished and contained
studs to allow the double-skin inserts to be attached by means of wing
nuts. Precautionary measures were taken to assure good thermal bond
along the contact area of the insert and the heated plate.
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The details of the steam chest are shown in figures 2 and 3.
Eleven condensate collecting sections were used to measure the local
values of unit thermal conductance. For each particular section, the
amount of heat transferred from the steam to the air in the double-skin
passages was measured by the condensate collected in a thermally insu-
lated glass burette. The steam for all runs was at a pressure of about
1 inch of mercury above atmospheric pressure.

Thermocouples were placed at several points along the inserts and
the heated plate. A traversing thermocouple was placed at the entrance
section of the ducts to measure the entering air temperature. The exit-
air temperature was measured by three thermocouples embedded at equal
intervals in a l/8—inch-diameter copper bar placed across the length of
the duct exits. An orifice plate with a long l/8-inch slit of the same
length as the copper bar was placed between the bar and the duct exits
in order to insure mixing for measurement of the mixed mean temperature.

Pressure.taps were located at four points in each of two passages.
These taps allowed the measurement of local values of static pressure.

Air at room temperature was drawn into the test section and was
metered by means of a sharp-edged orifice and pipe taps in a 2-inch pipe.

The thermal performance of two types of double-skin passages was
investigated. Both double skins were made of 0.032-inch aluminum sheet

 and when attached to the heated plate formed 10 air passages. The first

insert was trapezoidal in cross section (fig. 2) and was similar to the
type described In reference 2. The second unit was constructed of a
flat aluminum sheet placed over l/h—inch-square brass rods, which formed
the separation for the air passages (fig. 2). With certain modifications
in the arrangements described above, the effects of a thermal contact
resistance for the trapezoidal section and the fin effect of the inner
skin of the rectangular section were demonstrated.

ANALYSIS OF DATA

Analysls of the steam condensatlion data was accomplished in the
following menner. '"Nb-load" data were obtained when air was not allowed
to enter the duct passages. The no~load data thus represent that amount
of heat which was lost through the burette tubes and the insulation
surrounding the ducts. It was a heat loss which occurred whether or not
air was flowing in the duct passages and was therefore subtracted from
the condensation rate obtained under "load" conditionms. :
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Thus, the heat transferred from the mth condensate section to the
air flowing through the passages is

Yy = h(Rm - Ro)

where h 1is the heat of evaporation of 1 cubic centimeter of water at
steam~chest conditions in British thermal units per cubic centimeter,
Ry 1s the load rate of condensation in cubic centimeters per hour, and

'Ry 1s the no-load condensation rate in cubic centimeters per hour. The
increase in temperature of the alr flowing over this section 1s

%m

Yo'y =W_
‘p

and the temperature of the air at the center of each section (i.e., the
average air temperature for that section) is given by

n=m-1
q
™Tm = To + E =)+ on
ch 2ch

n=1

where T, 1s the temperature of the air at the entrance to the duct,

W 1s the weight rate of air through the 10 air passages in pounds per
hour, and cp 1is the heat capacity of the air in British thermal units

per pound per °F.

The value of the average unit thermal conductance for section m is
thus

qm .

fop = BPL (tp = Ty)

where b is the number of passages (10), P 1is the duct perimeter in
feet, 1l 1s the width of the condensate section in feet, and tp is

the mean of the inner- and outer-skin-surface temperatures of the duct
in section m. Measurements of the duct temperature of the inner skin
indicated that the temperature was very nearly equal to the temperature
of the steam plate (212° F). Thus the fin effectiveness of the inner
skin was experimentally determined to be very large. The high fin effec-
tiveness of the inner skin was also corroborated by calculations.
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More rigorous calculation wouldvrequire that the local temperature
] difference used in calculating fcm should be the logarithmic-mean

temperature difference for each condensate section. However, the tem-
perature of the air passing along each condensate section does not
increase sufficiently to make a significant difference between the local
logarithmic-mean temperature difference and the local arithmetic-mean
temperature difference.

The mean value, with respect to length, of the local unit conduc-
tance calculated in this report is to be used with the over-all '
logarithmic-mean temperature difference when calculating over-all
heat-transfer rates. :

Heat balances were obtained by dividing the measured enthalpy
change of the air by the heat supplied by the condensing steam. Heat
balances for the trapezoidal sections averaged 1.06 with a minimum value
of 1.02 and a maximum value of 1.26 (obtained for the lowest rate).

Heat balances for the rectangular ducts averaged 1.18 with a minimum
value of 0.95 and a meaximum value of 1.38.

RESULTS AND DISCUSSION

Heat Transfer

. The unit thermal conductance, plotted as a function of distance
from the duct entrance, is presented in figures 4(a) and 4(b) for rec-
tangular ducts and trapezoidal ducts, respectively. Data obtalned from
condensate sections 7 and 11, corresponding to points 9.5 and 24 inches
from the duct entrance, respectively, are omitted from these figures.
Data from section 7 are omitted because of condensate leakage from the
condensate section to the surrounding steem chest. Section 11 served
the function of a guard section to eliminate end conduction errors and
was thus not used.

For trapezoidal ducts (fig. 4(b)), the unit thermal conductance
attalns a constant value at a point 6 inches (or 25 hydraulic diam) from
the duct entrance. It is usually found that the unit conductance becomes
constant after approximately 5 to 10 hydraulic diameters from the entrance
(references 1 and 3 to 5). There are insufficient data to determine
whether this large difference in "entrance lengths" is due to defects
in the experimental apparatus or to the effects of the geometry of the
duct cross section. The scatter of the data points in this region near

8 the entrance for both the trapezoidal and rectangular ducts may be due
to the construction of the test apparatus.
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The values of Nusselt modulus, averaged with respect to length, are
plotted against Reynolds modulus in figure 5. The data for the turbulent
region for both trapezoidal and rectangular ducts fall on the same line.
In the turbulent reglon these values lie about 30 percent below the line

given by the equation Nu = 0. 022Re0- 8p0- 33 (reference 6). Data sum-
marized in reference 7 for air flowing in rectangular ducts are about
10 to 15 percent below the data given by this equation.

For Reynolds moduli less than about 1700, the data for rectangular
ducts are approximately 20 percent below the predicted curve in figure 5.
The predicted curve for the laminar region is obtained from the equation
(reference 6, pp. 43 and Lk):

f L W 1/3
Nu =_E§'_V_,E_H=7_6lf <1+_.1___C_2§.)/ dx
k L kx B

o 29

av

This equation is an integrated mean value of the expression for the local
or point unit thermal conductance. For the magnitudes of W, 5, B,

and I considered here the above expression is within 30 percent of

the simpler equation

Nug, = 7.6

stated in reference 8. The values of the unit thermal conductance 1in
the present report are based on the logarithmic-mean temperature

potential.

Transition from laminar to turbulent flow for rectangular ducts,
as indicated by the heat-transfer data, occurs at Re = 1700 and is
also shown in the plot of static-pressure drop against weight rate for
the rectangular ducts (fig. 6(a)). However, data for the trapezoidal
ducts do not show transition from turbulent to laminar flow either in
the curve of Nu agalnst Re (fig. 5) or in the curve of pressure drop
against weight rate (fig. 6(b)). (Similar results were found in the
tests reported in reference 9.) The cause of this phenomenon is not
apparent but two items may be considered. The data for the trapezoidal
duct were not taken for Reynolds modull of less than 1300. Also, the
geometry of the trapezoidal duct may retard transition from the turbulent
to the lsminar regime; that is, the transition may occur at a lower value
of the Reynolds modulus.

The inner skin increases the heat transferred to the outer skin by
means of the "fin effect" of the inner skin. The fact that the inmer
skin is very effective as a fin was demonstrated by measurement of the
inner-skin temperature, which was within 10° F of the outer-skin
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temperature over the range of air weight rates for which the data were
obtained. A further study of this fin effect was made upon the replace-
ment of the brass (k = 7OBtu/(hr)(sq £t) (°F/ft)) spacer strips (fig. 2)

by Bakelite (k ~ 0.1 Btu/(hr)(sq ft)(°F/ft)) strips of the same size.

From figure 7 it may be seen that this substitution decreased the heat
rate for the weight rate chosen by approximately 20 percent at the duct
entrance. The difference between the two curves decreases with increasing
distance from the tube entrance because the temperature difference of the
alr and duct wall necessarily becomes greater in the downstream region
when Bakelite spacers are used.

The reduction in heat transfer which occurs when a thermal contact
resistance exists between the inner and outer skins of a heated wing has
been calculated and shows that for f. = 6 Btu/(hr)(sq £t)(°F), the heat

transfer for the trapezoidal sections should be decreased by about

20 percent 1if a thermal contact resistance equivalent to an air gap of
0.006 inch exists between the inner and outer skins. Experimental results
showed that the decrease in heat transferred when a 0.0053-inch paper
strip was inserted between the inner and outer skins was less than

20 percent. Thus it may be concluded that the method of attachment of
the inner skin is of relatively minor importance.

Pressure Drop

The static-pressure-drop data for both isothermal and nonisothermal
flow in rectengular and trapezoidal ducts are presented in figure 6.
The static taps used in obtaining these data were both within the duct
passage (equal cross-sectional areas); therefore the static-pressure drop
for isothermal flow is also the total-pressure drop for isothermal flow.
Four static taps were provided in each of two duct passages. These taps

were spaced l%, 6, 18, and 25 inches from the duct entrance. Plots at

constant weight rate of the static pressure against length of passage
gave, in all cases, straight lines so that only the data from two static
taps (l1.e., the difference in static pressure between the two taps) are
presented.

It can be observed that the nonisothermal pressure drop is increased
by approximately 50 percent over the isothermal pressure drop. This
difference is about twice as much as would be predicted by means of the
equations given in reference 10. The reason for the large difference is
not apparent.

The isothermal static-pressure drop (fig. 6(a)) in the laminar region
for rectangular ducts varies as the 1.2 power of the weight rate. It 1is
well-established both analytically and experimentally for circular tubes
that the exponent should be 1.0 in the laminar region.
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The friction factor plotted against Reynolds modulus for rectangular
and trapezoidal ducts is given in figure 8. Excellent agreement between
experimental end predicted values is obtained for trapezoidal ducts.

The friction factor for the rectangular ducts varies from about 15 per-
cent below the predicted value at Re = 2000 to sbout 27 percent below
the predicted value at Re = 10,000,

CONCLUSIONS

From an investigation of the thermal performance of rectangular-
and trapezoidal-shaped inner-skin passages for anti-icing systems, the
following conclusions are drawn:

1. In the turbulent region, the average unit thermal conductance
for both the trapezoidal and rectangular ducts is about 35 percent less
than the values obtained from commonly used equations.

2. Heat-transfer and pressure data obtained for the trapezoidal
duct over a range of Reynolds moduli between 1300 and 16,000 indicate
that the flow was turbulent. :

/
3. Data obtained for rectangular ducts reveal that the flow may be
laminar at values of Reynolds modulus below 1800. Examination of the
local heat-transfer rates indicates that the flow may be laminar near
the entrances of the double-skin passages even for large values of
Reynolds modulus.

4. Measurements of the temperature of the inner-skin surfaces
indicate that the inner skin is effective in transferring heat to the
outer skin and that perfect bonding of the two surfaces is not necessary.

5. Isothermal pressure drops are predictable within about 20 percent.

6. Additional data should be obtalned to establish the effect of
various types of entrance (such as are used in actual systems) on the
heat-transfer and pressure-drop characteristics of the double-skin
passages.

Depértment of Engineering,
University of California,
Berkeley, Calif., March 26, 1946
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Figure 1.- Apparatus with steam chest and condensate section shown
above burette chamber. Air enters test section through bellmouth
slit at right.
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Figure 5.- Variation of Nusselt modulus with Reynolds modulus for
rectangular and trapezoidal ducts.
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Figure 6.- Variation of static-pressure drop with weight rate. First
static tap 6 inches from duct entrance; 19 inches between static taps;
entering air temperature, approximately 65° F.



NACA TN 2524

19

6.0

4,0

2.0

Flow

O Isothermal
A Nonisothermal

Slope = 1.75~--

/[\‘Slope = 1,70

1.0

Static -pressure drop, in. of water

8
.3
Ae ~ 2000
2 Ao
“NACA
1
1 15 3 5 10 20

Weight rate per passage, 1b/hr

(b) Trapezoidal ducts.

Figure 6.- Concluded.
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Figure 8.- Variation of friction factor with Reynolds modulus
for isothermal flow.
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